4.2 Article

A Novel In Vitro and In Silico System for Analyzing Complex Mechanobiological Behavior of Chondrocytes in Three-Dimensional Hydrogel Constructs

出版社

ASME
DOI: 10.1115/1.4051116

关键词

-

向作者/读者索取更多资源

This study describes the design and validation of a novel system for analyzing chondrocyte deformation patterns under mechanical stimulation. The computer-controlled device accurately applies compressive, tensile, and shear strains to hydrogel constructs and is highly reproducible. It characterized the strains within constructs and validated with various methods, providing insights into chondrocyte response to complex physiologically relevant deformation profiles.
Physiological loading is essential for the maintenance of articular cartilage through the regulation of tissue remodeling. To correctly understand the behavior of chondrocytes in their native environment, cell stimulating devices and bioreactors have been developed to examine the effect of mechanical stimuli on chondrocytes. This study describes the design and validation of a novel system for analyzing chondrocyte deformation patterns. This involves an in vitro mechanical device for a controlled application of multi-axial-loading regimes to chondrocyte-seeded agarose constructs and in silico models for analyzing chondrocyte deformation patterns. The computer-controlled device precisely applies compressive, tensile, and shear strains to hydrogel constructs using a customizable macro-based program. The synchronization of the displacements is shown to be accurate with a 1.2% error and is highly reproducible. The device design allows housing for up to eight novel designed free-swelling three-dimensional hydrogel constructs. Constructs include mesh ends and are optimized to withstand the application of up to 7% mechanical tensile and 15% shear strains. Constructs were characterized through mapping the strain within as mechanical load was applied and was validated using light microscopy methods, chondrocyte viability using live/dead imaging, and cell deformation strains. Images were then analyzed to determine the complex deformation strain patterns of chondrocytes under a range of dynamic mechanical stimulations. This is one of the first systems that have characterized construct strains to cellular strains. The features in this device make the system ideally suited for a systematic approach for the investigation of the response of chondrocytes to a complex physiologically relevant deformation profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据