4.7 Article

Carbon nanofibers impregnated with Fe3O4 nanoparticles as a flexible and high capacity negative electrode for lithium-ion batteries

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 862, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.158045

关键词

Flexible negative electrode; Lithium ion-battery; Carbon Nanofiber; Magnetite; Electrospinning

资金

  1. Colombian Ministry of Science, Technology and Innovation MinCiencias through the Colombia Scientific Program [FP44842-218-2018]
  2. University of Antioquia

向作者/读者索取更多资源

The development of E-textiles relies on portable energy storage devices that maintain comfort and functionality. A flexible carbon electrode, impregnated with magnetite nanoparticles, was developed for lithium batteries and showed improved electrochemical performance. Despite a slight reduction in capacity retention at high C-rates due to lower electronic conductivity, the composite material achieved a higher initial discharge capacity and coulombic efficiency compared to pure carbon nanofibers.
The development of E-textiles requires portable devices for energy storage that do not compromise the comfort and functionality of the textile. In this work, a flexible carbon electrode, obtained by impregnation of magnetite nanoparticles (Fe3O4-NPs) on electrospinning carbon nanofibers (CNFs), was developed as a negative electrode for lithium batteries. The active anodic material was characterized by Raman spectroscopy, thermogravimetric analyses (TGA), transmission electron microscopy (TEM) and electrochemical techniques. TEM images showed that Fe3O4-NPs particles, 32 nm in size, are well adsorbed on 400 nm CNFs. The electrochemical tests indicate that the presence of Fe3O4-NPs improves the electrochemical performance of the CNFs, achieving an initial high discharge capacity of 1146 mAh g(-1), superior to that exhibited for pure CNFs (480 mAh g(-1)). Also, higher coulombic efficiency (90%) was exhibited by the composite active material. However, a slight reduction of capacity retention at high C-rates was observed in the composite due to the lower electronic conductivity of Fe3O4-NPs. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据