4.7 Article

Magnetism and DFT calculations for understanding magnetic ground state of Fe doped Mn2O3

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 861, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.158567

关键词

DFT; Magnetism; Fe-doping; Mn2O3; Experimental

资金

  1. Federal University of Sao Carlos
  2. Federal University of Rio Grande do Norte (PPGCEM/UFRN)
  3. State University of Ponta Grossa (UEPG)
  4. CAPES
  5. CNPq
  6. Fundacao Araucaria (Brazil)
  7. CNPq [156176/2018-1]
  8. PNPD/CAPES [2019/88887.319041]
  9. FAPESP [2013/07296-2]

向作者/读者索取更多资源

Experimental analysis and first-principles calculations were conducted to investigate the magnetic ground state of Fe-doped Mn2O3. Results showed that magnetic properties can be tuned with Fe concentration, as indicated by changes in hysteresis, magnetization, and magnetic susceptibility. The agreement between experimental and computational approaches further confirmed the impact of Fe doping on magnetic properties.
In the present work, we have carried out experimental analysis along with first-principles density functional theory (DFT) calculations to understand the magnetic ground state of Fe doped Mn2O3. The analysis of structural properties show that the orthorhombic type of crystal structure with space group Pcab is preserved, but the unit cell volume decreases with an increase in Fe concentration. Magnetic susceptibility measurements show that two antiferromagnetic transitions (T-N1 = 25 K, T-N2 = 80 K) for undoped Mn2O3 merged into one at around 35 K with increasing concentration of Fe doping (Mn2-xFexO3 ; x = 0; 0.20; 0.50; 0.75). M-H curve at 5 K exhibits small hysteresis around the origin. The magnitude of magnetization increases with the increasing concentration of Fe. M-H curve at 100 K shows the linear behavior of M concerning H for x = 0.20 and x = 0.50, indicating the paramagnetic state of the sample. As a complement to the experimental analysis, first-principles calculations using DFT were carried out. Fe doping was simulated by the corresponding substitution of Mn atoms to reproduce stoichiometric features of Mn2-xFexO3. The agreement between the two approaches suggests that the magnetic ground state of Fe doped Mn2O3 is tunable with Fe concentration. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据