4.6 Article

The Three Indices Three Dimensions (3I3D) algorithm: a new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery

期刊

INTERNATIONAL JOURNAL OF REMOTE SENSING
卷 42, 期 12, 页码 4697-4715

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2021.1899334

关键词

-

向作者/读者索取更多资源

The study introduced a new 3I3D algorithm for predicting forest disturbances automatically and tested it in Tuscany, Italy, showing it to be the most accurate. A probability sampling framework was also used to estimate harvested forest area, which can produce large-scale statistics at an operational level.
Although estimating forest disturbance area is essential in the context of carbon cycle assessments and for strategic forest planning projects, official statistics are currently not available in several countries. Remotely sensed data are an efficient source of auxiliary information for meeting these needs, and multiple algorithms are commonly used worldwide for this purpose. However, both more accurate maps and precise area estimates are strongly required, especially in Mediterranean ecosystems, and scientific research in this topic area is anything but concluded. In this study, we present the new Three Indices Three Dimensions (3I3D) algorithm for the automated prediction of forest disturbances using statistical analyses of Sentinel-2 data. We tested 3I3D in Tuscany, Italy, for the year 2016, and we compared the results to those obtained using the Global Forest Change Map (GFC), LandTrendr (LT), and the Two Thresholds Method (TTM). The 3I3D map was the most accurate (omissions = 27%, commissions = 30%) followed by TTM (omissions = 35%, commissions = 39%), LT (omissions = 41%, commissions = 43%) and lastly GFC with slightly fewer omissions than LT (39%) but with many more commissions (69%). We also presented a probability sampling framework to estimate the forest harvested area using a model-assisted estimator that can be used at an operational level to produce large-scale statistics. 3I3D and TTM produced the smallest standard errors of the area estimates (8%) followed by LT (13%) and GFC (17%).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据