4.6 Article

Motion of circular cylinders during natural convection flow in X-shaped cavity filled with a nanofluid using ISPH method

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-04-2020-0231

关键词

Natural convection; ISPH; Circular cylinder; Heterogeneous porous media; X-shaped cavity; Nanofluid

资金

  1. Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia [R.G.P2/70/41]

向作者/读者索取更多资源

This study investigates the impacts of circular cylinder motion on natural convection flow inside an X-shaped cavity filled with Al2O3-water nanofluid. The study found that increasing the length of the hot source enhances temperature distributions and fluid flow, while a homogeneous porous medium slows down flow speed in the top layer of the cavity. The ISPH method effectively simulated the motion of cylinders in different thermal conditions within the X-shaped cavity.
Purpose This study aims to illustrate the impacts of the motion of circular cylinders on the natural convection flow from variable heated partitions inside the X-shaped cavity filled with Al2O3-water nanofluid. A partial layer of a homogeneous/heterogeneous porous medium is located in the top area of the X-shaped cavity. Design/methodology/approach Three different cases of the porous media including homogeneous, horizontal heterogeneous and vertical heterogeneous porous media were considered. Three different thermal conditions of the embedded circular cylinders including hot, cold and adiabatic conditions are investigated. An incompressible scheme of smoothed particle hydrodynamics (ISPH) method is modified to compute the non-linear partial differential equations of the current problem. Two variable lengths of the left and right sides of the X-shaped cavity have a high-temperature T-h and a low-temperature T-c, respectively. The other wall parts are adiabatic. The numerical simulations are elucidating the dependence of the heat transfer and fluid flow characteristics on lengths of hot/cold source L-h, porous cases, Darcy parameter, thermal conditions of the embedded circular cylinders and solid volume fraction. Findings Overall, an increment in length of hot/cold source leads to augmentation on the temperature distributions and flow intensity inside the X-shaped cavity. The hot thermal condition of the circular cylinder augments the temperature distributions. The homogeneous porous medium slows down the flow speed in the top porous layer of the X-shaped cavity. The average Nusselt number decreases as L-h increases. Originality/value ISPH method simulated the motion of circular cylinders in the X-shaped cavity. The X-shaped cavity is saturated with a partial layer porous medium. It is found that an increase in hot source length augments the temperature and fluid flow. ISPH method can easily handle the motion of cylinders in the X-shaped cavity. Different thermal conditions of cylinders can change the temperature distributions in X-cavity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据