4.7 Article

Unveiling the role of carbon defects in the exceptional narrowing of m-ZrO2 wide-bandgap for enhanced photoelectrochemical water splitting

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 41, 页码 21499-21511

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.03.248

关键词

Water splitting; Defects; Bandgap narrowing; Photoelectrochemical; Light absorption; DFT

资金

  1. Arab-German Young Academy of Sciences and Humanities (AGYA)

向作者/读者索取更多资源

The study investigates the effect of carbon defects in wide-band gap metal oxides on their performance in photoelectrochemical applications, showing that the defect structures are stable and can serve as efficient photoanodes. The defective structures enhance light absorption and exhibit improved optical properties, making them promising candidates for PEC applications.
The development of efficient photoelectrodes via defect engineering of wide-band gap metal oxides has been the prime focus for many years. Specifically, the effect of carbon defects in wide-band gap metal oxides on their performance in photoelectrochemical (PEC) applications raised numerous controversies and still elusive. Herein, the effect of various carbon defects in m-ZrO2 was investigated using the density functional theory to probe the thermodynamic, electronic, and optical properties of the defective structures against pristine m-ZrO2. The defect formation energies revealed that elevating the temperature promotes and facilitates the formation of carbon defects. Moreover, the binding energies confirmed the stability of all studied complex carbon defects. Furthermore, the band edge positions against the redox potentials of water species revealed that all the studied defective structures can serve as photoanodes for water splitting. Additionally, C-O3c (carbon atom substituted O-3c site) was the only defective structure that exhibited slight straddling of the redox potentials of water. Importantly, all investigated defective structures enhanced light absorption with different optical activities. It is worth mentioning that our results showed exceptional reduction in the bandgap energy compared to those reported experimentally for ZrO2-based materials. Finally, CO3cVO3c (carbon atom substituted O-3c associated with O-3c vacancy) defective m-ZrO2 enjoyed lowest sub-bandgap (1.9 eV), low defect formation energy, low exciton binding energy, high mobility of charge carriers, fast charge transfer, and low recombination rate. Concurrently, its optical properties were exceptional in terms of high absorption, low reflectivity and improved static dielectric constant. Hence, the study recommends CO3cVO3c defective m-ZrO2 as the leading candidate to serve as a photoanode for PEC applications. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据