4.5 Article

Novel statistical approaches to identify risk factors for soil-transmitted helminth infection in Timor-Leste

期刊

INTERNATIONAL JOURNAL FOR PARASITOLOGY
卷 51, 期 9, 页码 729-739

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpara.2021.01.005

关键词

Soil-transmitted helminths; Water; Sanitation and hygiene; Risk factors; Logistic regression; Recursive partitioning; Bayesian networks

资金

  1. Bill & Melinda Gates Foundation Grand Challenges Explorations Grant, USA [OPP1119041]
  2. Bill and Melinda Gates Foundation [OPP1119041] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

This study compared risk factors identified using three different statistical techniques on the same data. Recursive partitioning identified the most WASH and demographic risk factors, while Bayesian networks identified the most environmental risk factors. Model performance was similar across all techniques, with vegetation identified as a risk factor for Ascaris spp., and cleaning oneself with water after defecating identified as a risk factor for hookworm.
Soil-transmitted helminths (STHs) are parasitic intestinal worms that infect almost a fifth of the global population. Sustainable control of STHs requires understanding the complex interaction of factors contributing to transmission. Identifying risk factors has mainly relied on logistic regression models where the underlying assumption of independence between variables is not always satisfied. Previously demonstrated risk factors including water, sanitation and hygiene (WASH) access and behaviours, and socioeconomic status are intrinsically linked. Similarly, environmental factors including climate, soil and land attributes are often strongly correlated. Alternative methods such as recursive partitioning and Bayesian networks can handle correlated variables, but there are no published studies comparing these methods with logistic regression in the context of STH risk factor analysis. Baseline cross-sectional data from school-aged children in the (S)WASH-D for Worms study were used to compare risk factors identified from modelling the same data using three different statistical techniques. Outcomes of interest were infection with Ascaris spp. and any hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum). Mixed-effects logistic regression identified the fewest risk factors. Recursive partitioning identified the most WASH and demographic risk factors, while Bayesian networks identified the most environmental risk factors. Recursive partitioning produced classification trees that visualised potentially at-risk population sub-groups. Bayesian networks helped visualise relationships between variables and enabled interactive modelling of outcomes based on different scenarios for the predictor variables of interest. Model performance was similar across all techniques. Risk factors identified across all techniques were vegetation for Ascaris spp., and cleaning oneself with water after defecating for hookworm. This study adds to the limited body of evidence exploring alternative data modelling approaches in identifying risk factors for STH infections. Our findings suggest these approaches can provide novel insights for more robust interpretation. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据