4.5 Article

Stable stratification promotes multiple zonal jets in a turbulent jovian dynamo model

期刊

ICARUS
卷 368, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2021.114514

关键词

Jupiter interior; Atmospheres dynamics; Magnetohydrodynamics (MHD); Numerical simulations

资金

  1. GENCI-CINES [A0020410095]

向作者/读者索取更多资源

The ongoing NASA's Juno mission has placed new constraints on the internal dynamics of Jupiter, revealing a complex internal structure with a dipole-dominated surface magnetic field and a stratification of metallic and molecular hydrogen. The simulations show that in Jupiter's metallic core, magnetic energy is nearly an order of magnitude larger than kinetic energy, while kinetic energy is mainly pumped into zonal flows in the molecular envelope.
The ongoing NASA's Juno mission puts new constraints on the internal dynamics of Jupiter. Data gathered by its onboard magnetometer reveal a dipole-dominated surface magnetic field accompanied by strong localised magnetic flux patches. The gravity measurements indicate that the fierce surface zonal jets extend several thousands of kilometers below the cloud level before rapidly decaying below 0.94 - 0.96R(J), R-J being the mean Jovian radius at the one bar level. Jupiter's internal structure can be grossly decomposed in two parts: (i) an outer layer filled with a mixture of molecular hydrogen and helium where the zonal flows are thought to be driven; (ii) an inner region where hydrogen becomes metallic and dynamo action is expected to sustain the magnetic field. Several internal models however suggest a more intricate structure with a thin intermediate region in which helium would segregate from hydrogen, forming a compositionally-stratified layer. Here, we develop the first global Jovian dynamo which incorporates an intermediate stably-stratified layer between 0.82R(J) and 0.86R(J). Using much lower diffusivities than previous models enables us to more clearly separate the dynamics of the metallic core and the molecular envelope. Analysing the energy balance reveals that magnetic energy is almost one order of magnitude larger than kinetic energy in the metallic region, while most of the kinetic energy is pumped into zonal motions in the molecular envelope. Those result from the different underlying force hierarchy with a triple balance between Lorentz, Archimedean and ageostrophic Coriolis forces in the metallic core and inertia, buoyancy and ageostrophic Coriolis forces controlling the external layers. The simulation presented here is the first to demonstrate that multiple zonal jets and dipole-dominated dynamo action can be consolidated in a global simulation. The inclusion of a stable layer is a necessary ingredient that allows zonal jets to develop in the outer envelope without contributing to the dynamo action in the deeper metallic region. Stable stratification however also smooths out the small-scale features of the magnetic field by skin effect, yielding a too-dipolar surface field as compared to the observations. These constraints suggest that possible stable layers in Jupiter should be located much closer to the surface (0.9 - 0.95R(J)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据