4.6 Article

The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury

期刊

GLIA
卷 69, 期 9, 页码 2111-2132

出版社

WILEY
DOI: 10.1002/glia.24012

关键词

astroglia; brain derived neurotrophic factor; growth cone; myelin; protease activated receptor 1; spinal cord trauma; synapse; TrkB

资金

  1. Center for Scientific Review [R01NS052741-10, T32 GM 65841]
  2. National Multiple Sclerosis Society [G-1508-05951, RG-1901-33209]

向作者/读者索取更多资源

The study demonstrates that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. These improvements are accompanied by enhanced neuron preservation, myelin resiliency and repair, as well as reduced pro-inflammatory markers in astrocytes and microglia/monocytes. The loss of PAR1 function in astrocytes promotes both neuron survival and neurite outgrowth, highlighting its role in regulating glial-neuron interactions and neurotrophic factor signaling for CNS injury response and regenerative repair.
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据