4.7 Article

Increased precipitation differentially changed soil CO2 efflux in arid and humid areas

期刊

GEODERMA
卷 388, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2021.114946

关键词

Climate change; Carbon cycle; Greenhouse gas; Arid areas; Humid areas

资金

  1. National Natural Science Foundation of China [31922052, 32022056]

向作者/读者索取更多资源

The study assessed the effects of various durations and magnitudes of increased precipitation on soil CO2 efflux across different biomes. Results showed that increased precipitation stimulated soil CO2 efflux, especially in arid areas.
It has been well acknowledged that a continuous increase in atmospheric carbon dioxide (CO2) concentration will lead to climate warming. Numerous experiments have found that increased precipitation could promote soil CO2 emissions into the atmosphere, but there is great uncertainty in the magnitude of increased precipitation of this feedback. Here, we assessed the influences of different durations and magnitudes of increased precipitation on soil CO2 efflux across biomes through a meta-analysis. Humid (extremely wet, moderately wet, and slightly wet), temperate, and arid (slight drought, moderate drought and extreme drought) areas were classified according to the Palmer drought severity index (PDSI). Overall, the average experimentally applied precipitation increases of 31.81%, 19.14% and 37.68% significantly stimulated soil CO2 efflux by 12.74%, 13.10% and 14.71%, respectively for experiments from all areas, humid areas, and arid areas. No significant effects were found for temperate areas. Increased precipitation stimulated large soil CO2 efflux in extreme drought areas (PDSI > -3) by 38.09%. Moreover, soil CO2 efflux increased with increasing precipitation intensity but decreased with increasing precipitation duration regardless of the area with different PDSIs. Our results highlight the positive feedback between soil CO2 efflux and increased precipitation in both humid and arid terrestrial ecosystems, which improves our understanding in possible climate change effects on the global carbon cycle. Further efforts should assess the differential effects of various durations and magnitudes of increased precipitation in ecosystems with different wetness conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据