4.7 Article

Study on activity, stability limit and reaction mechanism of CO self-sustained combustion over the LaMnO3, La0.9Ce0.1MnO3 and La0.9Sr0.1MnO3 perovskite catalysts using sugar agent

期刊

FUEL
卷 292, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120289

关键词

Self-sustained combustion; Perovskite; Carbon monoxide; Stability limit; Sugar agent

资金

  1. National Natural Science Foundation of China [51776216]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA21040500]

向作者/读者索取更多资源

The La0.9Ce0.1MnO3 catalyst prepared using a sugar agent demonstrates excellent activity and stability in CO self-sustained combustion, attributed to high content of Mn4+ ions and reactive oxygen vacancies on the catalyst surface, as well as uniform dispersion. The findings are important for promoting efficient and clean energy utilization in the iron and steel industry.
The LaMnO3, La0.9Ce0.1MnO3 and La0.9Sr0.1MnO3 catalysts are synthesized using sugar agent, and the CO selfsustained combustion is investigated, where the catalytic performance is decided by temperature with CO conversions of 10% (T10), 50% (T50), and 90% (T90). The results show that self-sustaining combustion is successfully realized on the catalyst, and the order of activity decrease is as follows: La0.9Ce0.1MnO3 (with sugar) > La0.9Sr0.1MnO3 (with sugar) > LaMnO3 (with sugar) > LaMnO3 (without sugar) > La0.9Sr0.1MnO3 (without sugar) > La0.9Ce0.1MnO3 (without sugar). Combined with the results of XPS, H2-TPR, O2-TPD and CO-TPD techniques, the excellent activity of La0.9Ce0.1MnO3 (with sugar) can be attributed to the high content of Mn4+ ions and reactive oxygen vacancies enriched on the catalyst surface, sound low-temperature reduction, and uniform dispersion. Besides, in situ IR spectroscopy results indicate that the catalytic combustion of CO over manganese-based perovskite catalysts follows the L-H mechanism: the chemisorption of CO and O2 takes place to produce monodentate carbonates and bicarbonate species, which then decompose to yield CO2 release. The hightemperature stability test provides evidence that the La0.9Ce0.1MnO3 (with sugar) gives 100% CO conversion and that the activities remain almost unchanged after reaction for 12 h, where the temperature of catalyst bed reaches about 717 ?C. The results obtained are helpful to accept this technology on efficient and clean energy utilization in iron and steel industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据