4.7 Article

Insitu gasification ? chemical looping combustion of large coal and biomass particles: Char conversion and comminution

期刊

FUEL
卷 292, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120201

关键词

Chemical looping combustion; Char conversion time; Char fragmentation; Indian coals; Biomass

向作者/读者索取更多资源

Utilizing large solid fuel particles in fluidized bed Chemical Looping Combustion (CLC) can reduce the energy penalty associated with carbon capture. This study suggests using large particles of all fuels, including high-ash coals, in CLC systems without prior size reduction, with fuel type found to be the prime influencer of char conversion time and fragmentation phenomena.
Utilization of large solid fuel particles in fluidized bed ? Chemical Looping Combustion (CLC) has the benefits of reduced energy penalty related to carbon capture. When large fuel particles (mm-sized) are used, comminution plays a vital role in the fuel conversion rate, characteristics of ash, inventory loading and thus in the effective design of CLC systems. The present work deals with the conversion of char of large fuel particles and char fragmentation phenomenon in the insitu-gasification CLC environment. Three different coals and a woody biomass in the size range of + 8?25 mm are tested at three different bed temperatures (800 to 950 ?C) in a hematite-based batch CLC unit, using steam as the fluidizing/gasification agent. The char conversion time is found to increase by 60 to 170% when particle size changes from 8 to 25 mm and reduced by 42 to 86% with the increase in bed temperature. Regardless of fuel type and feed size, the inception of char fragmentation is noticed in the very first quarter of conversion indicating its significant influence on the char burnout time. A minimum critical char size exists below which char weakening does not yield breakage, whose values vary between 4.4 and 14.2 mm depending on fuel type and feed size. Fuel type is found to be the prime influencer of char conversion time and fragmentation phenomena. This study recommends the use of large particles of all fuels up to 25 mm in CLC systems without any prior size reduction, except the high-ash coals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据