4.7 Article

Improved hydrodeoxygenation of bio-oil model compounds with polymethylhydrosiloxane by Bronsted acidic zeolites

期刊

FUEL
卷 290, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.119883

关键词

Bio-oil; Hydrodeoxygenation; Zeolites; Acidity; Polymethylhydrosiloxane; Carbonyl Compounds

资金

  1. Scientific Research Projects of Hebei Education Department [QN2019050]
  2. National Natural Science Foundation of Hebei Province [B2020202004]

向作者/读者索取更多资源

This study utilizes solid-acidic zeolites and PMHS as low-load Pd-based catalyst supports to achieve efficient hydro-deoxygenation of bio-oil models under mild conditions, providing an attractive opportunity for bio-oil upgrading with improved efficiency and reduced environmental impact.
Bio-oil, one of significant renewable energy, was blocked from its direct application by thermodynamic instability due to the high oxygen content, so its deoxygenation needs urgent solution. Avoiding the disadvantages of the traditional catalytic method, such as harsh reaction conditions, potential explosion risk and environmental pollution, we utilize solid-acidic zeolites as low-load Pd-based catalyst supports instead of corrosive acid additives, with polymethylhydrosiloxane (PMHS) as the hydrogen-supplying agent, to achieve efficient hydro-deoxygenation of bio-oil models (carbonyl compounds) under mild conditions. The reaction conditions such as Si/Al ratio of HZSM-5 zeolite, temperature, solvent, and the type of Pd salts precursor are optimized. In particular, we have found that polar protic solvents improve catalytic efficiency by promoting proton transfer in the reaction. In an open-to-air, 97.9% ethylbenzene yield can be obtained for acetophenone conversion under mild conditions (0.5 wt% Pd/HZSM-5(18), 65 degrees C, 3 h, n-butanol as solvent), which is more efficient and environmental friendly than currently reports. Meanwhile, hydrogenation-dehydration mechanism was proposed, and the Brunsted acid in HZSM-5 promotes the dehydration of the alcohol (rate-limiting step) by efficiently accelerating the removal of hydroxyl groups and the proton transfer of the reaction. Furthermore, the catalytic scheme exhibits the excellent stability (reusable seven times) and versatility. The potential of a green catalytic technology using with PMHS opens attractive opportunities for bio-oil upgrading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据