4.6 Article

Alien invasive macrophyte put into the shade: The native floating-leaved macrophyte Nymphoides indica reduces Cabomba caroliniana growth performance through competition for light

期刊

FRESHWATER BIOLOGY
卷 66, 期 6, 页码 1123-1135

出版社

WILEY
DOI: 10.1111/fwb.13705

关键词

aquatic plant; habitat alteration; invasive species; restoration; shading

资金

  1. Queensland Government and Queensland Local Governments

向作者/读者索取更多资源

Through field observations and experiments, it was found that Nymphoides indica can coexist with Cabomba caroliniana and control its biomass, contributing to the diversity and abundance of native aquatic macrophytes.
Alien invasive aquatic macrophytes tend to displace native species and transform diverse macrophyte communities into monospecific stands. It is often thought that superior competitiveness allows alien invaders to achieve this. Cabomba caroliniana is a submersed macrophyte that is highly invasive worldwide and frequently monopolises habitats. However, field observations in Queensland, Australia, found that the native floating attached Nymphoides indica can co-exist with C. caroliniana, highlighting N. indica as a potential candidate for habitat restoration. To identify factors and processes that regulate the coexistence of these species, we conducted a field survey and two experiments in artificial mesocosms. We found that N. indica leaf areal coverage of the water surface significantly reduced C. caroliniana standing crop biomass in the field. C. caroliniana growth was also linked to water depth; N. indica was not able to grow beyond 2 m depth. There was a small reduction in N. indica root and shoot biomass when co-cultured with C. caroliniana in our experiment. Therefore, there was reciprocal competitive inhibition between the two species. However, the effect of N. indica on C. caroliniana was much larger. There was evidence that a reduction of C. caroliniana biomass below a threshold of c. 300 g dry mass/m is critical for protecting native submersed macrophyte diversity and abundance. Once C. caroliniana biomass exceeds this threshold, it dominates plant communities and forms high biomass monocultures. The experimental work identified shading as the most important factor that reduces C. caroliniana biomass, corroborating the relationship between leaf areal cover and C. caroliniana biomass found in the field. Based on these findings, N. indica could be useful for restoring the shallow lake littoral habitat, because it suppresses biomass of the invasive species to a level that allows other macrophytes to coexist and additionally increases habitat heterogeneity. Similarly, N. indica could be suitable to restore areas where C. caroliniana was previously removed to reduce the likelihood of future habitat monopolisation by C. caroliniana and realise long-term ecological benefits from invasive macrophyte management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据