4.7 Article

Action of phytosterols on thermally induced trans fatty acids in peanut oil

期刊

FOOD CHEMISTRY
卷 344, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2020.128637

关键词

Phytosterols; Heat treatment; Density functional theory; Trans fatty acids; Peanut oil

资金

  1. Natural Science Foundation of China [31772097]
  2. Special National Key Research and Development Plan [2017YFC1600600]

向作者/读者索取更多资源

The study revealed that plant sterols can effectively inhibit the formation of trans fatty acids in peanut oil, mainly due to their hydroxyl site activities. The differences in FMOE and BDE of plant sterol molecules are closely related to the rate of inhibition of isomerization.
The effects of six phytosterols on thermally induced trans fatty acids (TFAs) in peanut oil were investigated. Peanut oil, triolein, trilinolein and trilinolenin heated at 180 degrees C for 12 and 24 h with or without phytosterols were analyzed by GC-FID. The atomic net charge distribution, frontier molecular orbital energy (FMOE), and bond dissociation energy (BDE) of six phytosterols were calculated by density functional theory. Results showed that six phytosterols inhibited the formation of trans oleic acid, trans linoleic acids, trans linolenic acids, and total TFAs. The anti-isomerization effects of phytosterols were mainly associated with hydroxyl site activities, which were affected by the double bond position in the main skeleton of cyclopentane tetrahydrophenanthrene and the number of double bonds on the C17 branch chain. The FMOE difference and BDE of phytosterol molecules were closely related to their anti-isomerization rates. The anti-isomerization mechanisms of phytosterols on TFAs in peanut oil were proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据