4.3 Article

LncRNA NEAT1 accelerates renal tubular epithelial cell damage by modulating mitophagy via miR-150-5p-DRP1 axis in diabetic nephropathy

期刊

EXPERIMENTAL PHYSIOLOGY
卷 106, 期 7, 页码 1631-1642

出版社

WILEY
DOI: 10.1113/EP089547

关键词

diabetic nephropathy; DRP1; miR-150-5p; mitophagy; NEAT1; renal tubular injury

资金

  1. National Natural Science Foundation of China [81800650]
  2. Nature Science Foundation of Hunan Province, China [2018JJ2585, 2019JJ50887]

向作者/读者索取更多资源

Our study elucidated the regulatory roles of NEAT1 via the miR-150-5p-DRP1 axis in an in vitro model of DN induced by high glucose challenge, revealing that NEAT1 facilitates excessive reactive oxygen species production, cell damage, and inhibits mitophagy.
Diabetic nephropathy (DN) is a severe complication in diabetic patients, with a high mortality rate. Renal tubular injury is involved in the pathogenesis of DN. In this study, we aimed to uncover the regulatory roles of the NEAT1-miR-150-5p-DRP1 axis in an in vitro model of DN and its possible mechanisms. High glucose-challenged HK-2 cells were used as an in vitro DN model. NEAT1, miR-150-5p and DRP1 levels were assessed by RT-qPCR. Cell viability was determined by the MTT assay. MitoSOX Red and JC-1 were used to evaluate intracellular production of reactive oxygen species and mitochondrial membrane potential, respectively. Lactate dehydrogenase release and superoxide dismutase activity were assessed with commercial kits. The protein levels of DRP1, p62, BECN1(beclin 1) and BNIP3 were determined by western blotting. The interaction between NEAT1 (DRP1) and miR-150-5p was verified by a dual-luciferase reporter assay and an RNA immunoprecipitation assay. Our results showed that in response to high glucose the NEAT1 and DRP1 levels were upregulated, whereas the miR-150-5p level was downregulated in HK-2 cells. Knockdown of NEAT1 or DRP1 in high glucose-challenged HK-2 cells inhibited excessive reactive oxygen species production and lactate dehydrogenase release, increased cell viability, mitochondrial membrane potential and superoxide dismutase activity and enhanced mitophagy. Inhibition of miR-150-5p resulted in the opposite results. Mechanistically, NEAT1 sponged miR-150-5p to increase the DRP1 level. Moreover, silencing of NEAT1 or DRP1 could counteract miR-150-5p inhibition-induced deleterious effects. Collectively, our findings indicate that NEAT1 facilitates high glucose-induced damage in HK-2 cells by suppressing mitophagy via the miR-150-5p-DRP 1 axis, which sheds light on a novel mechanism of DN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据