4.2 Article

A survey of exoplanet phase curves with Ariel

期刊

EXPERIMENTAL ASTRONOMY
卷 53, 期 2, 页码 417-446

出版社

SPRINGER
DOI: 10.1007/s10686-021-09715-x

关键词

Exoplanets; Ariel space mission; Atmospheres; Phase curves

资金

  1. CNES
  2. PRODEX grant [PEA: 4000127377]
  3. McGill Space Institute Graduate Fellowship
  4. Natural Sciences and Engineering Research Council of Canada's Postgraduate Scholarships-Doctoral Fellowship
  5. Fonds de recherche du Quebec - Nature et technologies through the Centre de recherche en astrophysique du Quebec
  6. ASI [2018.22.HH.O]
  7. STFC [ST/T00178X/1]

向作者/读者索取更多资源

The ESA-Ariel mission will dedicate about 10% of its time to studying exoplanet phase curves, aiming to provide key constraints on atmospheric dynamics, composition, thermal structure, and clouds of warm exoplanets through defining science questions, requirements, and a list of potential targets, as well as estimating precision and conducting simulated phase curves. It is expected that full-orbit phase variations for 35-40 exoplanets could be observed during the 3.5-year mission.
The ESA-Ariel mission will include a tier dedicated to exoplanet phase curves corresponding to similar to 10% of the science time. We present here the current observing strategy for studying exoplanet phase curves with Ariel. We define science questions, requirements and a list of potential targets. We also estimate the precision of phase curve reconstruction and atmospheric retrieval using simulated phase curves. Based on this work, we found that full-orbit phase variations for 35-40 exoplanets could be observed during the 3.5-yr mission. This statistical sample would provide key constraints on atmospheric dynamics, composition, thermal structure and clouds of warm exoplanets, complementary to the scientific yield from spectroscopic transits/eclipses measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据