4.7 Article

Sunlight-induced photocatalytic degradation of various dyes and bacterial inactivation using CuO-MgO-ZnO nanocomposite

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 28, 期 31, 页码 42243-42260

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-021-13572-8

关键词

X-ray techniques; Nanocomposite; Photocatalyst; Organic dyes; Antibacterial activity

向作者/读者索取更多资源

A novel tri-phase CuO-MgO-ZnO nanocomposite was prepared and its physical properties, photocatalytic efficiency for dye degradation, and antibacterial activity were investigated. The nanocomposite exhibited efficient photocatalytic degradation and strong antibacterial properties against various bacteria.
Novel tri-phase CuO-MgO-ZnO nanocomposite was prepared using the co-precipitation technique and investigated its physical properties using characterization techniques including XRD, FTIR, Raman, IV, UV-vis, PL, and SEM. The application of grown CuO-MgO-ZnO nanocomposite for the degradation of various dyes under sunlight and antibacterial activity against different bacteria were studied. The XRD confirmed the existence of diffraction peaks related to CuO (monoclinic), MgO (cubic), and ZnO (hexagonal) with CuO phase 40%, MgO 24%, and ZnO 36%. The optical energy gap of nanocomposite was 2.9 eV, which made it an efficient catalyst under sunlight. Raman and FTIR spectra have further confirmed the formation of the nanocomposite. SEM images revealed agglomerated rod-shaped morphology. EDX results showed the atomic percentage of a constituent element in this order Cu>Zn>Mg. PL results demonstrate the presence of intrinsic defects. The photocatalytic activity against methylene blue (MB), methyl orange (MO), rhodamine-B (RhB), cresol red (CR), and P-nitroaniline (P-Nitro) dyes has shown the excellent degradation efficiencies 88.5%, 93.5%, 75.9%, 98.8%, and 98.6% at 5 ppm dye concentration and 82.6%, 83.6%, 64.3%, 93.1%, and 94.3% at 10 ppm dye concentration in 100 min, respectively, under sunlight illumination. The higher degradation is due to the generation of superoxide and hydroxyl radicals. The recyclability test showed the reusability of catalyst up to the 5th cycle. The antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus Vulgaris, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria with the zone of inhibition 30, 31, 30, 30, and 30 mm, respectively, was achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据