4.7 Article

Nitrogen burden from atmospheric deposition in East Asian oceans in 2010 based on high-resolution regional numerical modeling

期刊

ENVIRONMENTAL POLLUTION
卷 286, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.117309

关键词

Nitrogen deposition; Atmospheric dry deposition; Atmospheric wet deposition; East China Sea; Regional chemical transport model

资金

  1. MEXT/JSPS KAKENHI [JP18H03359]

向作者/读者索取更多资源

The East Asian oceans are heavily impacted by atmospheric nitrogen deposition, with emissions dominated by ammonia and nitrogen oxides. Deposition of reduced nitrogen dominates over most land and open ocean, while oxidized nitrogen dominates over marginal seas and desert areas. Dry deposition of nitric acid and wet deposition of fine-mode nitrate and ammonium are important processes determining nitrogen deposition over the region.
East Asian oceans are possibly affected by a high nitrogen (N) burden because of the intense anthropogenic emissions in this region. Based on high-resolution regional chemical transport modeling with horizontal grid scales of 36 and 12 km, we investigated the N burden into East Asian oceans via atmospheric deposition in 2010. We found a high N burden of 2-9 kg N ha(-1) yr(-1) over the Yellow Sea, East China Sea (ECS), and Sea of Japan. Emissions over East Asia were dominated by ammonia (NH3) over land and nitrogen oxides (NOx) over oceans, and N deposition was dominated by reduced N over most land and open ocean, whereas it was dominated by oxidized N over marginal seas and desert areas. The verified numerical modeling identified that the following processes were quantitatively important over East Asian oceans: the dry deposition of nitric acid (HNO3), NH3, and coarse-mode (aerodynamic diameter greater than 2.5 mu m) NO3-, and wet deposition of fine-mode (aerodynamic diameter less than 2.5 mu m) NO3- and NH4+. The relative importance of the dry deposition of coarse-mode NO3- was higher over open ocean. The estimated N deposition to the whole ECS was 390 Gg N yr(-1); this is comparable to the discharge from the Yangtze River to the ECS, indicating the significant contribution of atmospheric deposition. Based on the high-resolution modeling over the ECS, a tendency of high deposition in the western ECS and low deposition in the eastern ECS was found, and a variety of deposition processes were estimated. The dry deposition of coarse-mode NO3- and wet deposition of fine-mode NH4+ were the main factors, and the wet deposition of fine-mode NO3- over the northeastern ECS and wet deposition of coarse-mode NO3- over the southeastern ECS were also found to be significant processes determining N deposition over the ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据