4.6 Article

Exact and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study

期刊

ENTROPY
卷 23, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/e23040466

关键词

Bayesian inference; Markov Chain Monte Carlo; Sequential Monte Carlo; Riemann Manifold Hamiltonian Monte Carlo; integrated nested laplace approximation; fixed-form variational Bayes; stochastic volatility

向作者/读者索取更多资源

This study empirically illustrates the performance of different classes of Bayesian inference methods in estimating stochastic volatility models, comparing their adaptability to various model specifications and dimensions. The research emphasizes the importance of considering various data-generating processes for a fair assessment of the methods used in comparing models.
We conduct a case study in which we empirically illustrate the performance of different classes of Bayesian inference methods to estimate stochastic volatility models. In particular, we consider how different particle filtering methods affect the variance of the estimated likelihood. We review and compare particle Markov Chain Monte Carlo (MCMC), RMHMC, fixed-form variational Bayes, and integrated nested Laplace approximation to estimate the posterior distribution of the parameters. Additionally, we conduct the review from the point of view of whether these methods are (1) easily adaptable to different model specifications; (2) adaptable to higher dimensions of the model in a straightforward way; (3) feasible in the multivariate case. We show that when using the stochastic volatility model for methods comparison, various data-generating processes have to be considered to make a fair assessment of the methods. Finally, we present a challenging specification of the multivariate stochastic volatility model, which is rarely used to illustrate the methods but constitutes an important practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据