4.7 Article

A comparative study on the metaheuristic-based optimization of skew composite laminates

期刊

ENGINEERING WITH COMPUTERS
卷 38, 期 4, 页码 3549-3566

出版社

SPRINGER
DOI: 10.1007/s00366-021-01401-y

关键词

Laminate; Composite; Optimization; Metaheuristic; Finite element

向作者/读者索取更多资源

In this paper, a comprehensive study was conducted on the effectiveness and optimization performance of designing skew composite laminates under dynamic operational environments. The FE-CHP algorithm was found to outperform other algorithms in terms of accuracy, computational speed, and solution reliability.
Plate structures are the integral parts of any maritime engineering platform. With the recent focus on composite structures, the need for optimizing their design and functionality has now been tremendously realized. In this paper, a comprehensive study is carried out on the effectiveness and optimization performance of three metaheuristic algorithms in designing skew composite laminates under dynamic operational environments. The natural frequencies of the composite panels are measured using a first-order shear deformation theory-based finite element (FE) approach. The stacking sequence of the composite panels is optimized so that the natural frequency separation between the first two modes is maximized. The three metaheuristics considered here are genetic algorithm (GA), repulsive particle swarm optimization with local search and chaotic perturbation (RPSOLC), and co-evolutionary host-parasite (CHP) algorithm. It is observed that in general, the FE-coupled metaheuristic algorithms are quite capable to significantly improve the baseline designs. In particular, FE-CHP algorithm outperforms both the FE-GA and FE-RPSOLC algorithms with respect to accuracy, computational speed and solution reliability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据