4.7 Article

Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage

期刊

ENERGY
卷 222, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.119975

关键词

Liquid air energy storage; Combined cooling; heating and power; Organic rankine cycle; Compression heat

资金

  1. National Demonstration Project for CAES of China
  2. National Natural Science Foundation of China [U1766203]
  3. Scientific and Technological Project of Qinghai Province [2017-GX-101]

向作者/读者索取更多资源

Liquid air energy storage can significantly improve energy storage efficiency and performance through a novel system that utilizes compression heat for combined cooling, heating, and power generation, leading to higher round-trip efficiency and exergy efficiency compared to baseline LAES systems.
Liquid air energy storage (LAES) is a promising large-scale energy storage technology in improving renewable energy systems and grid load shifting. In baseline LAES (B-LAES), the compression heat harvested in the charging process is stored and utilized in the discharging process to enhance the power generation. Due to the low liquid air yield, a large amount of compression heat is wasted. In order to improve the round-trip efficiency (RTE) and extend the application field, a novel combined cooling, heating and power system based on the LAES (LAES-CCHP) is proposed and investigated. In the proposed system, an organic Rankine cycle (ORC) is employed to recover the high-temperature surplus compression heat to generate electricity and an absorption refrigeration system (ARS) is introduced to utilize the low-temperature compression heat to realize district cooling and heating. Based on a mathematical model, performance evaluation and exergy analysis of the system is performed. It is found that the effective and cascaded utilization of the compression heat could significantly improve the efficiency and performance of the system. With optimal operational parameters, the RTE and exergy efficiency of the LAES-CCHP could reach 69.64% and 57.02%, respectively, which are 37.66% and 12.71% higher than those of the B-LAES. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据