4.7 Article

Experimental study of kerosene supersonic combustion with pilot hydrogen and fuel additive under low flight mach conditions

期刊

ENERGY
卷 222, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.119858

关键词

Supersonic combustion; RP-3 kerosene; Pilot hydrogen; Fuel additive; Clean air; Comparative experiment

资金

  1. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

This paper experimentally studied liquid kerosene ignition and combustion with pilot hydrogen and fuel additive in a model supersonic combustor under simulated conditions of flight Mach 3.8-4.0. It was found that an appropriate amount of fuel additive can significantly enhance kerosene supersonic combustion and temperature rises, leading to mode transition from transonic to subsonic. The concentration of additive and hydrogen addition play important roles in improving combustor performance, while excessive amounts may lower combustion efficiency.
Reliable ignition and efficient combustion are critical for low flight Mach starting stage of dual-mode scramjet. In this paper, liquid kerosene ignition and combustion with pilot hydrogen and fuel additive were experimentally studied in a model supersonic combustor with clean air inflow, under the simulated conditions of flight Mach 3.8-4.0. The selected composite additive is mainly composed of about 20%-vol low-carbon small-molecular unsaturated alkanes and about 80%-vol diethylmethoxyborane. It is found that, under the low-temperature supersonic conditions, either RP-3 kerosene or with additives can all be ignited by the pilot hydrogen flame of least ERH = 0.065-0.076, only fuel additive effects seem to be still not enough for auto-ignition. Self-sustaining flame stabilization and combustion were realized with the tandem dual-cavity flame-holders, an appropriate amount of hydrogen addition can significantly promote the liquid kerosene combustion heat release without inlet disturbing. Enhancement of kerosene supersonic combustion and faster/higher temperature rises with the fuel additive of certain concentration were experimentally validated, and the positive effects showed more significant at a lower equivalence ratio of ERK = 0.43, in which the combustion enhancement induced mode transition from transonic to subsonic is found due to the 20%-vol additive. The additive effects might be greatly depended on the concentration in a nonlinear way when reducing concentration from 20%-vol to 10%-vol, a small concentration of 10%-vol additive did not produce an obvious enhancement effect. A small amount of hydrogen addition or an appropriate proportion of additive can improve the combustor performance, while too high total equivalence ratios or large amount of hydrogen addition tend to lower combustion efficiency. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据