4.7 Article

A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control

期刊

ENERGY
卷 222, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.119963

关键词

Frequency control; Robust model predictive control; Electric vehicle; Multimicrogrids; V2G

资金

  1. science and technology project of State Grid Corporation of China
  2. Research and application of flexible control technology for distribution system with largescale distributed generation [52093220000H]
  3. National Natural Science Foundation of China [51977154]

向作者/读者索取更多资源

This paper presents a control method using electric vehicles to achieve stable operation of multimicrogrids, with simulation experiments to verify its effectiveness. The proposed method can effectively suppress frequency fluctuations, enhance system anti-interference capabilities.
The microgrid contains many distributed power sources which have great randomness and volatility, so it is difficult to maintain the stable operation. As a mobile energy storage component with the capability of Vehicle-to-Grid (V2G), electric vehicles (EVs) provide a solution for the safe and stable operation of multimicrogrids. First, a microgrid system including micro gas turbines, distributed power and EVs which consider the random behavior of EV users as dynamic limitations is established. A coupled multimicrogrid system is then established. An improved robust model predictive frequency control strategy of multimicrogrids with EVs is proposed, and the whole control process is transformed into linear matrix inequalities (LMIs). A linear quadratic regulator (LQR) is added to further optimize control quantities to ensure the stability of the output. Finally, different scenarios are set up in the microgrids, and the simulation results are compared with other control methods. The simulation results show that the proposed control method can better suppress the frequency fluctuation with a faster response speed than other methods. The regulation of LQR is verified, and the proposed algorithm is shown to be effective in solving the uncertainty of system parameters. The establishment of multimicrogrids in-creases the anti-interference ability of the system. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据