4.7 Article

Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion

期刊

ENERGY
卷 231, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120895

关键词

Coal; Kinetic; Pine sawdust; Synergistic effect; TGA; Thermodynamic

资金

  1. Scientific Research Projects (BAP) Division of Akdeniz University in Turkey [FBA20183512]

向作者/读者索取更多资源

The study revealed a significant synergistic effect between PS and coal during pyrolysis and combustion processes, with the proportions of PS and coal in the blend affecting reaction temperatures and mass loss rates. The blend of 25PS was found to be more suitable for energy production through both pyrolysis and combustion compared to 50PS. Further investigation with different blend ratios may provide more insights into this synergistic effect.
Nowadays, most of the recent large-scale installations are configured to use more than one fuel. Thermal analysis allows us to properly design and operate especially such a large-scale co-pyrolysis and/or co-combustion process. In this study, thermal behaviours of pine sawdust (PS), coals, and their blends were investigated by using thermogravimetric analysis (TGA) under nitrogen and air atmospheres with different heating rates of 10, 20, and 40 degrees C min(-1). Kinetic parameter such as activation energy (Ea) was calculated by using Kissenger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Starink models. The results showed the existence of an obvious synergistic effect between PS and coal during pyrolysis and combustion processes. The initial, maximum, and burnout temperatures of the reactions; the mass loss rate; and total mass loss were influenced by the proportions of PS and coal in the blend. For pyrolysis the average Ea of 25PS calculated by KAS, FWO, and Starink models was found as 31.57, 40.45, and 32.55 while that of 50PS was 166.80, 168.64, and 167.25 kJ mol(-1), respectively. For combustion, the average Ea of 25PS calculated by KAS, FWO, and Starink models was found as 59.57, 67.74, and 60.52 while that of 50PS was 66.60, 74.20, and 67.49 kJ mol(-1), respectively. According to the Ea value, the blend of 25PS was more suitable than 50PS for energy production through both pyrolysis and combustion. This synergistic effect between PS and coal may be further detailed with more different blend ratios. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据