4.5 Article

Efficient CH4/CO2 Gas Mixture Separation through Nanoporous Graphene Membrane Designs

期刊

ENERGIES
卷 14, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/en14092488

关键词

separation; binary mixture; molecular dynamics; nanoporous graphene

资金

  1. FAPESP-Sao Paulo Research Foundation [2014/50279-4]
  2. Shell Brasil

向作者/读者索取更多资源

Nanoporous graphene membranes are being investigated for gas separation, using molecular dynamics simulations to study the permeation and separation of CO2 and CH4 through a two-stage bilayer sub-nanometer porous graphene membrane design. It was found that the interlayer spacing of the bilayer nanoporous graphene membrane significantly impacts the permeation and separation of the gas mixture. The optimal configuration included an inline design with an interlayer spacing of 12 angstrom, showing high selectivity and permeation for effective separation of CH4/CO2 gas mixtures.
Nanoporous graphene membranes have drawn special attention in the gas-separation processes due to their unique structure and properties. The complexity of the physical understanding of such membrane designs restricts their widespread use for gas-separation applications. In the present study, we strive to propose promising designs to face this technical challenge. In this regard, we investigated the permeation and separation of the mixture of adsorptive gases CO2 and CH4 through a two-stage bilayer sub-nanometer porous graphene membrane design using molecular dynamics simulation. A CH4/CO2 gashouse mixture with 80 mol% CH4 composition was generated using the benchmarked force-fields and was forced to cross through the porous graphene membrane design by a constant piston velocity. Three chambers are considered to be feeding, transferring, and capturing to examine the permeation and separation of molecules under the effect of the two-stage membrane. The main objective is to investigate the multistage membrane and bilayer effect simultaneously. The permeation and separation of the CO2 and CH4 molecules while crossing through the membrane are significantly influenced by the pore offset distance (W) and the interlayer spacing (H) of the bilayer nanoporous graphene membrane. Linear configurations (W = 0 angstrom) and those with the offset distance of 10 angstrom and 20 angstrom were examined by varying the interlayer spacing between 8 angstrom, 12 angstrom, and 16 angstrom. The inline configuration with an interlayer spacing of 12 angstrom is the most effective design among the examined configurations in terms of optimum separation performance and high CO2 and CH4 permeability. Furthermore, increasing the interlayer distance to 16 angstrom results in bulk-like behavior rather than membrane-like behavior, indicating the optimum parameters for high selectivity and permeation. Our findings present an appropriate design for the effective separation of CH4/CO2 gas mixtures by testing novel nanoporous graphene configurations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据