4.5 Article

Grid-Connected PV Systems Controlled by Sliding via Wireless Communication

期刊

ENERGIES
卷 14, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/en14071931

关键词

grid-connected photovoltaic system; maximum power point tracking (MPPT); sliding mode control; wireless communication

向作者/读者索取更多资源

The study aims to design and control a grid-connected PV system via wireless to ensure its correct operation. By utilizing sliding control and PI control methods, the costs were reduced and the system's operation was successfully validated.
Grid-connected photovoltaic (PV) systems are designed to provide energy to the grid. This energy transfer must fulfil some requirements such as system stability, power quality and reliability. Thus, the aim of this work is to design and control a grid-connected PV system via wireless to guarantee the correct operation of the system. It is crucial to monitor and supervise the system to control and/or detect faults in real time and in a remote way. To do that, the DC/DC converter and the DC/AC converter of the grid-connected PV system are controlled wirelessly, reducing costs in cabling installations. The used control methods are the sliding for the DC/DC converter and the Proportional-Integral (PI) for the inverter. The sliding control is robust, ensures system stability under perturbations, and is proven to work well via wireless. The PI control is simple and effective, proving its validity through wireless too. In addition, the effect of the communications is analysed in both controllers. An experimental platform has been built to conduct the experiments to verify the operation of the grid-connected PV system remotely. The results show that the system operates well, achieving the desired values for the maximum power point tracker (MPPT) sliding control and the energy transfer from the inverter to the grid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据