4.7 Article

The role of environmental conditions, climatic factors and spatial processes in driving multiple facets of stream macroinvertebrate beta diversity in a climatically heterogeneous mountain region

期刊

ECOLOGICAL INDICATORS
卷 124, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2021.107407

关键词

Turnover; Nestedness; Climatic forcing; Mountainous regions; Multi-scale factors; Functional traits

资金

  1. National Natural Science Foundation of China [51939009, 31770460]
  2. Young Scientific Research Innovation Team Project of Xi'an University of Technology [104/256051715]
  3. Academy of Finland

向作者/读者索取更多资源

This study focused on the multifaceted beta diversities of lotic macro invertebrates in streams along the northern and southern slopes of the Qinling Mountains. Results showed that streams draining the north slope had lower beta diversity values compared to those draining the south slope, attributed to distinct climatic and environmental conditions. Spatial variables were found to be the most important in shaping beta diversity, followed by local environmental and climatic variables. Community-environment relationships differed among the diversity facets and their components, highlighting the importance of an integrative approach for biodiversity management and conservation in aquatic ecosystems.
There is a growing recognition that examining patterns of ecological communities and their underlying determinants is not only feasible based on taxonomic data, but also functional and phylogenetic approaches. This is because these additional facets can enhance the understanding of the relative contribution of multiple processes in shaping biodiversity. However, few studies have focused on multifaceted beta diversities in lotic macro invertebrates, especially when considering driving factors operating at multiple spatial scales. Here, we examined the spatial patterns of multi-faceted (i.e., taxonomic, functional and phylogenetic) beta diversity and their components (i.e., turnover and nestedness) of macroinvertebrates in 50 sites in 10 streams situated in the north and south slope of the Qinling Mountains, the geographical dividing line of Northern and Southern China. We found that the streams draining the north slope showed significantly lower values of beta diversity based on all three facets than the streams draining the south slope. Such north-to-south increases of beta diversity were caused by the distinct climatic and local environmental conditions between the sides of the mountain range. Moreover, spatial variables generally played the most important role in structuring all facets and components of beta diversity, followed by local environmental and climatic variables, whereas catchment variables were less important. Despite the similar results of relative contribution of explanatory variables on each beta diversity facet, the details of community-environment relationships (e.g., important explanatory variables and explanatory power) were distinct among different diversity facets and their components. In conclusion, measuring functional and phylogenetic beta diversity provides complementary information to traditional taxonomic approach. Therefore, an integrative approach embracing multiple facets of diversity can better reveal the mechanisms shaping biodiversity, which is essential in assessing and valuing aquatic ecosystems for biodiversity management and conservation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据