4.4 Article

VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation

期刊

DEVELOPMENTAL BIOLOGY
卷 473, 期 -, 页码 80-89

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2021.01.013

关键词

Matrix metalloproteinase; Biomineralization; Sea urchin; Gene regulation; Tubulogenesis; Vascular endothelial growth factor

资金

  1. Israel Science Foundation [41/14, 211/20]
  2. ISEF fellowship
  3. Zuckerman fellowship

向作者/读者索取更多资源

The uptake and mineralization of minerals by organisms are tightly regulated by networks of specialized proteins within biomineralizing cells. In vertebrates, matrix metalloproteases (MMPs) play a role in mineralization of teeth and bones, but much remains unknown about their function in invertebrates. The sea urchin embryo serves as a valuable model for studying genetic and molecular aspects of biomineralization, with membrane type MMPs such as Pl-MmpL7 and Pl-MmpL5 being localized within spicules and playing a crucial role in skeletogenesis.
Organisms can uptake minerals, shape them in different forms and generate teeth, skeletons or shells that support and protect them. Mineral uptake, trafficking and nucleation are tightly regulated by the biomineralizing cells through networks of specialized proteins. Specifically, matrix metalloproteases (MMPs) digest various extracellular substrates and allow for mineralization in the vertebrates? teeth and bones, but little is known about their role in invertebrates? systems. The sea urchin embryo provides an excellent invertebrate model for genetic and molecular studies of biomineralization. MMP inhibition prevents the growth of the calcite spicules of the sea urchin larval skeleton, however, the molecular mechanisms and genes that underlie this response are not well understood. Here we study the spatial expression and regulation of two membrane type MMPs that were found to be occluded in the sea urchin spicules, Pl-MmpL7 and Pl-MmpL5, and investigate the function of Pl-MmpL7 in skeletogenesis. The inhibition of MMPs does not change the volume of the calcium vesicles in the skeletogenic cells. The expression of Pl-MmpL7 and Pl-MmpL5 is regulated by the Vascular Endothelial Growth Factor (VEGF) signaling, from the time of skeleton initiation and on. The expression of these genes is localized to the subsets of skeletogenic cells where active spicule growth occurs throughout skeletogenesis. Downregulation of Pl-MmpL7 expression delays the growth of the skeletal rods and in some cases, strongly perturbs skeletal shape. The localized expression of Pl-MmpL7 and Pl-MmpL5 to the active growth zone and the effect of Pl-MmpL7 perturbations on skeletal growth, suggest that these genes are essential for normal spicule elongation in the sea urchin embryo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据