4.7 Article

Measurement and modelling of thermal and physical properties of wood construction materials

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 284, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.122780

关键词

Porosity; Permeability; Thermal diffusivity; Pycnometry; Laser flash method; Thermogravimetric analysis

资金

  1. U.S. Department of Justice, National Institute of Justice [2016DNBX0185]

向作者/读者索取更多资源

This study evaluates the measurement of properties of construction materials under high temperature exposure, finding that virgin and char materials can be used in combination with thermogravimetric data to estimate material properties at intermediate decomposition levels. Permeability depends on the structure and composition of the material, with decomposition increasing space between elements and resulting in higher permeability.
Construction materials exposed to fire conditions may decompose resulting in a loss of strength as well as contributing to the growth and size of the fire. Predicting the behavior of timber and other construction materials during a fire exposure requires accurate thermal modeling of the material considering both the effects of elevated temperature and material decomposition state (virgin to char) on the thermal and physical properties. This paper evaluates the use of different techniques to measure the porosity, permeability and thermal diffusivity of wood construction materials at different levels of decomposition due to a high temperature exposure. The porosity and thermal diffusivity values of wood exhibit similar changes with decomposition level. It was found that virgin and char material properties can be used in conjunction with thermogravimetric data to estimate material properties at intermediate decomposition levels. The findings can be used to reduce the number of experiments required to characterize other materials. Permeability was observed to be dependent on the structure and composition of the material. Scanning electron microscopy images revealed that decomposition increased the space between the otherwise compact-arranged elements (grain, particles), resulting in an increase in permeability. Consequently, permeability should be measured at different decomposition levels and direction to quantify the material changes due to a high temperature exposure. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据