4.6 Article

Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord

期刊

ESTUARINE COASTAL AND SHELF SCIENCE
卷 183, 期 -, 页码 123-135

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2016.08.026

关键词

High Arctic fjord; Glacial meltwater runoff; Zooplankton; Grazing; Phytoplankton growth

资金

  1. Danish Ministry of the Environment (project PETAX)
  2. Government of Greenland Ministry of Education, Research and Nordic Cooperation
  3. Greenland Institute of Natural Resources

向作者/读者索取更多资源

Freshwater runoff from the Greenland Ice Sheet (GIS) can be an important driver influencing plankton community structure in Greenland fjords. In the present study, we describe physical, taxonomic and functional differences in the plankton community in Young Sound, a NE Greenland fjord, from the inner fjord close to the GIS towards the coastal region in late summer. The fjord is influenced by runoff from land-terminating glaciers that separated the surface layer from cold underlying waters. The highest chlorophyll a concentration (<2.5 mu g 1(-1)) was found in the coastal region at 20-50 m depth. The most profound difference in the mesozooplankton community structure along the section was seen in the abundance of the copepods Microcalanus spp., which were present in the coastal region in the upper 100 m, and Pseudocalanus spp., which only occurred in the surface layers and mainly in the inner part of the fjord. In addition to this, both species have been observed to change in abundance within the last decade. Calanus spp. copepods made up > 74.9% of the total copepod biomass at all stations, and their grazing impact was the highest among the copepod groups. Copepod grazing impact on the phytoplankton standing stock, however, was exceeded by microzooplankton grazing, investigated by dilution experiments, with the highest grazing impact on the phytoplankton standing stock of 63% d(-1) in the inner part of the fjord. In spite of high phytoplankton instantaneous growth rates at the innermost fjord station, proto-zooplankton was capable of controlling the phytoplankton production. The study showed functional differences within the system and provides indications of how dynamic the coastal ecosystem of Greenland can be. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据