4.7 Article

A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures

期刊

出版社

WILEY
DOI: 10.1111/mice.12655

关键词

-

资金

  1. Institute of Bridge Engineering at University at Buffalo

向作者/读者索取更多资源

This study employs reinforcement learning with deep neural network for shape optimization of wind-sensitive structures and leverages domain knowledge to enhance training efficiency. The proposed optimization method outperforms existing algorithms in mitigating the effects of wind on structures.
Structural shape optimization plays an important role in the design of wind-sensitive structures. The numerical evaluation of aerodynamic performance for each shape search and update during the optimization process typically involves significant computational costs. Accordingly, an effective shape optimization algorithm is needed. In this study, the reinforcement learning (RL) method with deep neural network (DNN)-based policy is utilized for the first time as a shape optimization scheme for aerodynamic mitigation of wind-sensitive structures. In addition, tacit domain knowledge is leveraged to enhance the training efficiency. Both the specific direct-domain knowledge and general cross-domain knowledge are incorporated into the deep RL-based aerodynamic shape optimizer via the transfer-learning and meta-learning techniques, respectively, to reduce the required datasets for learning an effective RL policy. Numerical examples for aerodynamic shape optimization of a tall building are used to demonstrate that the proposed knowledge-enhanced deep RL-based shape optimizer outperforms both gradient-based and gradient-free optimization algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据