4.6 Article

Low-rank factorization for rank minimization with nonconvex regularizers

期刊

COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
卷 79, 期 2, 页码 273-300

出版社

SPRINGER
DOI: 10.1007/s10589-021-00276-5

关键词

Rank minimization; Matrix completion; Nonconvex regularizers; Semidefinite programming

向作者/读者索取更多资源

This study introduces an algorithm based on nuclear norm and low rank factorization for solving the rank minimization problem, which has less estimation bias and can reduce the effect of noise on measurements compared to convex relaxations. By iteratively reweighted nuclear norm schemes, it efficiently solves the rank minimization problem for large matrices.
Rank minimization is of interest in machine learning applications such as recommender systems and robust principal component analysis. Minimizing the convex relaxation to the rank minimization problem, the nuclear norm, is an effective technique to solve the problem with strong performance guarantees. However, nonconvex relaxations have less estimation bias than the nuclear norm and can more accurately reduce the effect of noise on the measurements. We develop efficient algorithms based on iteratively reweighted nuclear norm schemes, while also utilizing the low rank factorization for semidefinite programs put forth by Burer and Monteiro. We prove convergence and computationally show the advantages over convex relaxations and alternating minimization methods. Additionally, the computational complexity of each iteration of our algorithm is on par with other state of the art algorithms, allowing us to quickly find solutions to the rank minimization problem for large matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据