4.5 Article

Point defects in lead sulfide: A first-principles study

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 190, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2021.110285

关键词

Semiconductors; Point defects; Density functional theory

资金

  1. Pazy Foundation

向作者/读者索取更多资源

The energetic and electronic properties of point defects in lead sulfide were studied using first-principles methods. A novel, stable interstitial site was identified, with lead vacancies found to have the lowest formation energies in S-rich conditions and sulfur vacancies in Pb-rich conditions.
The energetic and electronic properties of point defects in lead sulfide (PbS) were studied using first-principles methods. In particular, intrinsic defects including single-site and double-site defects (e.g. Schottky dimers and Frenkel pairs) were considered as well as extrinsic oxygen containing defects. A novel, stable and energetically preferred interstitial site was identified. Convergence of the calculations with supercell size was examined and found to be well-converged for most, but not all, defects in 250 atom supercells. For intrinsic defects, it was found that, after accounting for the chemical potentials of Pb and S in the environment, the lowest formation energies are associated with lead vacancies in S-rich conditions and sulfur vacancies in Pb-rich conditions and not with Schottky defects, as previously reported. Interstitials, Frenkel pairs, and antisite defects were all found to have much larger defect formation energies and are therefore unlikely to be found. The electronic band structure was affected by the presence of intrinsic defects. In particular, for lead vacancies, the Fermi level was shifted below valence band maximum, indicating p-type conductivity; and for lead interstitials, it was shifted above the conduction band minimum, indicating n-type conductivity. In contrast, sulfur vacancies were found to introduce levels deep in the band gap, which may affect the electronic properties significantly. The charged states of the point defects were examined and found to be preferred over the neutral states. The formation energies of oxygen defects were found to be highly competitive energetically with those of intrinsic defects, and therefore, oxygen point defects are expected to play a significant role in determining material properties. In particular, in Pb-rich conditions, oxygen is expected to be drawn into the material to occupy S vacancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据