4.7 Article

Acoustic pressure oscillation effects on mean burning rates of plateau propellants

期刊

COMBUSTION AND FLAME
卷 226, 期 -, 页码 69-86

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2020.11.018

关键词

Plateau propellants; Binder melt flow; Mean burning rate; Acoustic instability; Burning rate augmentation

资金

  1. Defence research and development organization, Government of India

向作者/读者索取更多资源

Combustion instabilities are a significant problem in rocket motors, requiring control of mean burning rate variations. Experimental studies show that acoustic pressure oscillations can significantly enhance burning rates in propellant combustion.
Combustion instabilities constitute a well pronounced problem in all large rocket motors due to the inherent acoustic pressure oscillations established based on the port geometries. Suppression of the combustion instabilities in the solid rocket motor is required for controlling the mean burning rate variation which arises due to the interaction of acoustic pressure wave with propellant combustion. An experimental study has been carried out to investigate the effects of acoustic pressure oscillations on mean burning rates of non-aluminized and aluminized propellants which exhibit low pressure exponent index (n) in the burning rate trends. Steady and unsteady mean burning rates are determined from combustion photography method using a window bomb test facility over the pressure range of 17 MPa. A rotary valve is coupled with the window bomb setup to generate acoustic pressure oscillations inside the test chamber (cylindrical pressure vessel), which imposes the required frequencies of 140, 180 and 240 Hz respectively. The acoustic pressure amplitudes are varied from 0.04% to 1.4% of the mean chamber pressure. Both non aluminized propellants and aluminized propellants have shown significant enhancement in the mean burning rate due to the fluctuations imposed by acoustic pressure amplitudes and frequencies on the propellant combustion. The enhancement in the mean burning rate also depends upon dynamic response of the flame to the excited frequencies and acoustic pressure amplitudes. The plateau burning behaviour of the non-aluminized propellant is completely distorted whereas it is retained in aluminized compositions. Conversely, it also shifts the mean pressure range of plateau burning rate trend. The maximum burning rate augmentation factors resulted from imposed acoustic pressure wave on non-aluminized and aluminized propellants are observed as 1.27 and 1.47 respectively. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据