4.7 Article

Migration and fate of characteristic pollutants migration from an abandoned tannery in soil and groundwater by experiment and numerical simulation

期刊

CHEMOSPHERE
卷 271, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129552

关键词

Chromium; Saturation index; Numerical simulation; Migration; Species distribution

资金

  1. National Key R&D Programof China [2018YFC1802201]
  2. Sichuan University [2019CDYB-19]
  3. Yibin Municipal Government [2019CDYB-19]

向作者/读者索取更多资源

This study investigated soil and groundwater samples from an abandoned tannery, finding variations in pollutant concentrations in different areas, with the main pollutants in groundwater being Cr(NH3)(6)Cl2+ and CrO42-. Simulation results revealed that pollutant migration primarily occurred in the Quaternary system.
The tannery industry is an integral part of economic development in many developing countries, and the environmental pollution caused by the tannery industry cannot be ignored. In this study, soil and groundwater samples at different depths were collected from an abandoned tannery to investigate the temporal and spatial distribution of characteristic pollutants produced by tanning. The concentrations of Cr, Cl, F and NH4+-N in the soil from the sludge temporary storage area were higher than those from the liming and unhairing workshop, chrome tanning workshop, wastewater outlet, and around wastewater pond. The concentration of Cr(VI) in all sampling sites was below the detection limit. The main species of Cr in the groundwater were Cr(NH3)(6)Cl2+ and CrO42- based on the simulation of Visual MINTEQ. The saturation index was negative and changed with time indicating that Cr existed in the dissolved phase. The proportion of Cr(VI) to total Cr was negatively correlated with the saturation index in village 1 and village 3. The simulation results from Visual MODFLOW and MT3DMS showed that the migration of Cr, NH4+-N, Cl- and F- mainly occurred in the Quaternary system. The coverage of the pollution plume of pollutants in villages 1 and 3 was as follows: Cr > NH4+-N > Cl- > F-. Two decay rate calculation methods of pollutants with migration time and distance were put forward to provide a basis for the actual investigation of the pollution migration scope and time determination. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据