4.7 Article

Bio-remediation approaches for alleviation of cadmium contamination in natural resources

期刊

CHEMOSPHERE
卷 268, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128855

关键词

Microremediation; Phytoremediation; Biosorption; Contamination; Heavy metal; Transgenic species

向作者/读者索取更多资源

Cadmium is a harmful heavy metal that can cause environmental and health hazards through the food chain. Various biological approaches, particularly using microbes, have shown potential for remediating Cd contamination in natural resources. Studies have also demonstrated the effectiveness of heavy metal resistant microbes as biosorbents for removing Cd from natural resources.
Cadmium (Cd) is a harmful heavy metal that can cause potent environmental and health hazards at different trophic levels through food chain. Cd is relatively non-biodegradable and persists for a long time in the environment. Considering the potential toxicity and non-biodegradability of Cd in the environment as well as its health hazards, this is an urgent issue of international concern that needs to be addressed by implicating suitable remedial approaches. The current article specifically attempts to review the different biological approaches for remediation of Cd contamination in natural resources. Further, bioremediation mechanisms of Cd by microbes such as bacteria, fungi, algae are comprehensively discussed. Studies indicate that heavy metal resistant microbes can be used as suitable biosorbents for the removal of Cd (up to 90%) in the natural resources. Soil-to-plant transfer coefficient (TC) of Cd ranges from 3.9 to 3340 depending on the availability of metal to plants and also on the type of plant species. The potential phytoremediation strategies for Cd removal and the key factors influencing bioremediation process are also emphasized. Studies on molecular mechanisms of transgenic plants for Cd bioremediation show immense potential for enhancing Cd phytoremediation efficiency. Thus, it is suggested that nano-technological based integrated bioremediation approaches could be a potential futuristic path for Cd decontamination in natural resources. This review would be highly useful for the biologists, chemists, biotechnologists and environmentalists to understand the long-term impacts of Cd on ecology and human health so that potential remedial measures could be taken in advance. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据