4.7 Article

Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater

期刊

CHEMOSPHERE
卷 269, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128739

关键词

Electro-fenton; Sonication; Ammoniacal nitrogen; COD; Applied voltage; Dye intermediate wastewater

资金

  1. Science and Engineering Research Board [ECR/2018/001811]

向作者/读者索取更多资源

The study focuses on utilizing combined Electro-Fenton and sonication for treating wastewater from dye intermediate manufacturing. Under optimal conditions, the removal efficiency for ammoniacal nitrogen and COD were 59.4% and 79.2% respectively, which was enhanced to 65.5% and 85.4% after sonication was applied. Combining EF process with sonication provides a feasible and scientific approach to achieve efficient removal of ammoniacal nitrogen and COD.
The intricacy in the treatment of effluents from the textile sector attracts the researchers since 20th century. Dye intermediate manufacturing industries are responsible for producing the toxic pollutants such as nitro-aromatics, benzene, toluene, phenol, heavy metals etc. with intense colour. The present study focuses on the performance of combined Electro-Fenton (EF) and sonication for the removal of ammoniacal nitrogen and COD from dye intermediate manufacturing wastewater. Batch experiments of EF were performed using graphite electrodes and sonication was applied to the EF treated wastewater to enhance the treatment performance. A number of experiments were executed to discover the influence of pH, applied voltage, Fenton catalyst dosage and time of electrolysis on the removal efficiency of EF batch process was scrutinized. The pH was varied between 2 and 4, applied voltage from 1 to 4V, Fenton catalyst dosage between 50 and 200 mg L-1 and time between 15 and 180 min. At optimum condition i.e. pH 3, applied voltage 3V, Fenton catalyst dosage of 100 mg L-1 and 120 min electrolysis time, the percentage removal obtained for ammoniacal nitrogen and COD were 59.4% and 79.2% respectively. The removal efficiency was increased to 65.5% for ammoniacal nitrogen and 85.4% for COD after applying sonication to the EF treated wastewater. The removal of ammoniacal nitrogen and COD can be achieved in a scientific and feasible way by combining EF process with sonication. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据