4.7 Article

Enhancement of static magnetic field on nitrogen removal at different ammonium concentrations in a sequencing batch reactor: Performance and biological mechanism

期刊

CHEMOSPHERE
卷 268, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128794

关键词

Activated sludge enhancement; Biological nitrogen removal (BNR); Microbial community structure; Enzyme activity; Functional gene

资金

  1. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07202-001-002]

向作者/读者索取更多资源

The study found that a static magnetic field of 50 mT had the best effect on enhancing nitrogen removal, especially at high NH4+ concentrations. The biological mechanism by which SMF influences nitrogen removal varies depending on the NH4+ concentration, increasing key enzyme activities and functional gene abundances, as well as improving functional bacterial abundances.
This study aimed to investigate the effects and biological mechanism of external static magnetic fields (SMFs) on enhancing nitrogen removal at different influent ammonium nitrogen (NH4+) concentrations. Four sequential batch reactors (SBRs) with SMFs of 0, 15, 30, and 50 mT were operated continuously for 196 days, during which the influent NH4+-N concentration increased stepwise as 50, 100, 350, and 600 mg L-1. The results showed that 50 mT had optimum effects on enhancing nitrogen removal, especially at high NH4+-N concentrations (350 and 600 mg L-1). The biological mechanism by which SMF influences nitrogen removal varies depending on the NH4+ concentration. At low NH4+-N concentrations (50 and 100 mg L-1), a field of 50 mT increased key enzyme activities and corresponding functional gene abundances. Additionally, it further improved functional bacterial abundances, which involved nitrifying and denitrifying bacteria at high NH4+ concentrations. These findings could provide guidance for the selection of optimum SMF intensity at different influent NH4+ concentrations. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据