4.7 Article

Arsenic transfer and accumulation in the soil-rice system with sulfur application and different water managements

期刊

CHEMOSPHERE
卷 269, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128772

关键词

Continuous flooding; Iron plaque; Intermittent drainage; Rice; Paddy field; As speciation

资金

  1. National Natural Science Foundation of China [41907146]

向作者/读者索取更多资源

Sulfur addition can reduce arsenic accumulation in rice grains and has different effects under different soil water management conditions. By adding sulfur, the concentration of arsenic in soil solution can be effectively reduced, and the arsenic content in rice can also be decreased.
Rice (Oryza sativa L.) can readily accumulate arsenic (As), owing to its high capacity to take up As and special flooding cultivation, which poses a potential risk to human health. Although sulfur (S) can influence As accumulation in rice, its behavior in the rice-soil system is not clear under practical water management conditions. In this study, the transfer and soil solution dynamics of As in the whole soil-rice system was investigated under continuous flooding or intermittent drainage, either with S addition or not. The results showed that intermittent drainage effectively reduced As concentration in soil solution regardless of S conditions, and it only reduced As content in rice without S addition. Exogenous S decreased As concentration in soil solution and rice, except in the roots of mature rice, under continuous flooding. Sulfur addition significantly decreased the total As and As(III) contents in rice grains, by 62% and 79% under continuous flooding and by 50% and 76% under intermittent drainage, respectively. Moreover, the addition of S resulted in impaired iron plaque and inhibited binding of As. Sulfur also reduced As translocation from rice roots to shoots. Therefore, S could alleviate the crisis of excessive accumulation of As in rice grains caused by flooded environment through various adjustments to the soil-rice system. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据