4.7 Article

Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization

期刊

CHEMOSPHERE
卷 269, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129407

关键词

Apple; Cd pollution; AMF; Physiological index; Gene expression

资金

  1. National Key Research and Development Program of China [2018YFD1000300]
  2. Earmarked Fund for China Agriculture Research System [CARS-27]

向作者/读者索取更多资源

Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing plants' tolerance to heavy metals, with MdGH3-2/12 gene regulating AM colonization in apple to improve Cd stress tolerance.
Arbuscular mycorrhizal fungi (AMF) can form a symbiotic relationship with most terrestrial plant roots, promote plant growth, and heavy metal (HM) tolerance and thus plays a crucial role in phytoremediation. However, research on the relationship between colonization level and HM tolerance is limited. In this study, apple (Malus domestica) Gretchen Hagen3 genes MdGH3-2/12 silencing plants were treated with four AMF and Cd combination treatments to determine AMF colonization levels, biomass, Cd accumulation, photosynthesis, fluorescence, reactive oxygen species (ROS) and antioxidant substance accumulation, and Cd uptake, transport and detoxification gene expression levels. Results indicate the greater sensitivity of transgenic plants under AMF inoculation and Cd treatment compared with wild type (WT) via lower AMF colonization levels, biomass accumulation, photosynthetic parameters, and the accumulation and clearance homeostasis of ROS, as well as lower detoxification expression levels and higher Cd uptake and transport expression levels. Our study essentially demonstrates that MdGH3-2/12 plays an important role in Cd stress tolerance by regulating AM colonization in apple. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据