4.7 Article

Prediction of the excited-state reaction channels in photo-induced processes of nitrofurantoin using first-principle calculations and dynamics simulations

期刊

CHEMOSPHERE
卷 281, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130831

关键词

Photochemistry; Theoretical studies; Nitrofurantoin; Reaction channels

资金

  1. National Key R&D Program of China [2017YFB0203403]
  2. NSFC [21873112, 21933011]
  3. Guangdong Youth Innovative Talents and Natural Science Foundation of Guangdong Province [2018A030310660]

向作者/读者索取更多资源

Understanding the photochemistry of antibiotic compounds is crucial for addressing environmental pollution concerns. This study utilized a combination of computational methods to investigate the photochemistry of the trans-isomer of nitrofurantoin, providing insights into the photo-induced reaction mechanisms of medium to large-sized drug compounds.
The understanding of the photochemistry of antibiotic compounds is important because it gives the direct information on the possible environmental pollution caused by them. Due to their large size, the theoretical studies of their excited-state reactions are rather challenging. In current work, we combined the on-the-fly trajectory surface-hopping dynamics, conical-intersection optimizations and excited-state pathway calculations to study the photochemistry of the trans-isomer of nitrofurantoin, a widely-used drug to treat the urinary tract infections. The dynamics-then-pathway approach was taken. First the trajectory surface hopping dynamics at the state-averaged complete-active-space self-consistent-field (SA-CASSCF) level with small active space and small basis sets were run. Second, the minimum-energy conical-intersection optimizations were performed. Finally the excited pathways from the Frank-Condon region to different reaction channels were built at the multi-state multi-reference second-order perturbation (MS-CASPT2) level with large active space and large basis set. Several possible channels responsible for the photo-induced reaction mechanism of the trans-nitrofurantoin were obtained, including the cleavage of the NO bond of the NO2 moiety, the photoisomerization at the central CN bond, and other internal conversion channels. Our findings give some preliminary explanations on available experimental observations. It is also demonstrates that the current theoretical approach is a powerful tool to explore the excited-state reactions in the photochemistry of media-sized or large-sized drug compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据