4.7 Article

Performance and dynamic modeling of a continuously operated pomace olive packed bed for olive mill wastewater treatment and phenol recovery

期刊

CHEMOSPHERE
卷 280, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130797

关键词

Olive pomace; Olive mill wastewater; Phenolic compounds; Activated carbon-beads; Adsorption; Regeneration

资金

  1. PHC TOUBKAL 2019 Project (French-Morocco bilateral program) [41525VG]

向作者/读者索取更多资源

The study focused on converting solid waste from olive oil extraction processes into activated carbon, used for the elimination and recovery of phenolic compounds from olive mill wastewater. Following characterization and evaluation of adsorption performance, it was found that SA-AC beads remained effective after multiple cycles.
The solid waste of olive oil extraction processes (olive pomace, OP) was converted into activated carbon (AC) by treating it with NaOH and then encapsulating it within sodium alginate (SA) in beads by crosslinking (SA-AC beads). The prepared SA-AC beads were utilized as an adsorbent for the elimination and recovery of phenolic compounds (PCs) from olive mill wastewater (OMWW) following a zero liquid and waste discharge approach to implement and promote the circular economy concept. The novel AC and SA-AC beads were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and Brunauer, Emmett and Teller (BET) analysis. The adsorption performance of these beads was evaluated in batch and fixed-bed reactors operated in a concurrent flow system. The results revealed that an adsorption capacity of 68 mg g(-1)- was attained for 4000 mg L-1 phenolic compounds. The kinetics of the adsorption process of the PCs fit a pseudo second-order model, and the most likely mechanism took place in two stages. The adsorption isotherm conformed to the Langmuir model, representing the monolayer adsorption of the phenolic compounds. The dynamic models were used, and they accurately represented the breakthrough curves. Considering PC recovery and process reusability, a regeneration experiment of SA-AC beads was carried out in fixed-bed reactors. SA-AC beads showed a high percentage desorption >40% using ethanol and were efficient after several cycles of OMWW treatment and phenol recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据