4.7 Article

Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater

期刊

CHEMOSPHERE
卷 280, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130778

关键词

Adsorption; Aerogel monolith; Diclofenac; Electro-adsorption; Electro-desorption; Pharmaceuticals

资金

  1. Spanish Ministry of Science, Innovation and Universities
  2. ERDF [CTM 2017-87326-R]

向作者/读者索取更多资源

This study investigated the adsorption of Diclofenac on a commercial carbonaceous aerogel monolith and found that anodic polarization enhanced the removal efficiency of DCF. Additionally, cathodic polarization proved to be a viable regeneration alternative for the spent aerogel. Sequential electro-adsorption/electro-desorption cycles confirmed the feasibility of this strategy for pollutant removal.
In this study, adsorption of a non-steroidal anti-inflammatory drug such as Diclofenac (DCF) on a commercial carbonaceous aerogel honeycomb monolith (NANOLIT (R)-NQ40) was ascertained. Based on, the overall design of an adsorption treatment should include a feasible regeneration process for the spent adsorbent. In this work, the adsorption/desorption process was ameliorated by coupling of electrochemical technology (anodic/cathodic polarisation). It was determined that the anodic polarisation enhanced the DCF removal and it was related with the applied voltage and the disposition of the electrodes into the bulk solution. Anodic polarisation at optimal conditions (voltage 0.9 V, electrodes gap 2.5 cm and electrolyte concentration higher than 1 mM) provoked an enhancement (around 30%) in the DCF adsorption rate. The spent aerogel regeneration method for the adsorbed or electro-adsorbed DCF was investigated and cathodic polarisation proved to be a viable regeneration alternative attaining the total regeneration of aerogel. The electro-desorption mechanism seemed to be linked to the generation of repulsive intermolecular forces in the aerogel surface. Finally, the sequential electro-adsorption/electro-desorption process was performed in successive cycles. The results confirmed the feasibility of this strategy, maintaining the efficiency with no structural changes in the monolith after several cycles being the electro-reversible adsorption of pollutants on aerogel a promising technology for the removal of pharmaceuticals from wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据