4.7 Article

In vivo visualization assay to evaluate the effects of maternal exposure to mercury on offspring bioaccumulation in the oriental river prawn (Macrobrachium nipponense)

期刊

CHEMOSPHERE
卷 270, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129440

关键词

Macrobrachium nipponense; Mercury; Ovary; Metal accumulation

资金

  1. National Key R&D Program of China [2019YFD0900400]

向作者/读者索取更多资源

The study aimed to assess the bioaccumulation of Hg2+ in prawn offspring and found that Hg2+ affects the gonadal tissues and reproductive capacity of prawns, as well as being transferred through maternal transfer. Additionally, AIEgen can be used for quantitative detection of Hg2+ absorption in prawn larvae, aiding in understanding the dynamics of Hg2+ between maternal and offspring.
Mercury (Hg) is a persistent pollutant that accumulates in aquatic animals. However, studies related to understand how gonad tissue of this species responds to mercury exposure and elucidation of mercury bioaccumulation in crustacean offspring by cross-generational, are still sparse. The present study aimed to assess the bioaccumulation of Hg2+ in vivo in prawn offspring by a specific aggregation-induced emission fluorogen (AIEgen). The 96 h median lethal concentration (LC50) values of mercury to the juveniles were 0.072 mg/L. Hg2+ reduced growth performance, damaged oocyte quality, and inhibited ovary maturation, thus inhibiting gonadal maturation in intact prawns. F1 offspring were exposed to Hg2+ by direct transfer from their F0 parents, as shown by the distribution of mercury in gonads and fertilized eggs. In the medium containing oriental river prawn larvae, the Hg2+ concentration decreased rapidly, indicating fast initial larval uptake of Hg2+. Due to metal ion triggered AIE activity, analysis of fluorescence images showed that prawn offspring accumulated Hg2+ via maternal transfer, and there was a relationship among the photoluminescence intensity, the AIEgen concentration, and mercury levels. The quantitative detection of Hg2+ absorption from prawn larvae by the AIEgen represents a novel analytical technique to understand the dynamics of Hg2+ between maternal and offspring. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据