4.6 Review

Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 27, 期 37, 页码 9482-9494

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202100845

关键词

decoherence; electronic structure; ligand field theory; magnetic properties; qubit

资金

  1. National Science Foundation Graduate Research Fellowship [DGE1745301]
  2. Caltech
  3. Dow Next Generation Educator Fund

向作者/读者索取更多资源

Transition metal complexes have become prominent candidates for quantum bit applications in the past decade due to their tunability and long coherence times. However, decoherence limits their use in quantum information technologies. Recent developments have proposed various chemical design principles to extend coherence in molecular transition metal qubits, outlining different decoherence regimes and design principles for each. Dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.
In the past decade, transition metal complexes have gained momentum as electron spin-based quantum bit (qubit) candidates due to their synthetic tunability and long achievable coherence times. The decoherence of magnetic quantum states imposes a limit on the use of these qubits for quantum information technologies, such as quantum computing, sensing, and communication. With rapid recent development in the field of molecular quantum information science, a variety of chemical design principles for prolonging coherence in molecular transition metal qubits have been proposed. Here the spin-spin, motional, and spin-phonon regimes of decoherence are delineated, outlining design principles for each. It is shown how dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据