4.7 Article

Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics

期刊

CHEMICAL ENGINEERING JOURNAL
卷 410, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.128361

关键词

Biomass-based; Eco-friendly; Durable; Flame retardancy; Cotton fabrics

资金

  1. National Key Research Development Program of China [2017YFB0309001]
  2. National Natural Science Foundation of China [U19A2045, 51991351, 51827803]
  3. Young Elite Scientists Sponsorship Program by CAST
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

The novel eco-friendly biomass-based coating developed inspired by the classic dye-fixing process provides durable flame retardancy to cotton fabrics without using traditional toxic elements or solvents, achieving high flame retardance by promoting the formation of graphitized carbon layers in cotton fibers. The coating showed excellent durability even after repeated laundering and friction cycles, demonstrating its potential as a green flame-retardant system without hazardous compounds.
Inspired by the classic dye-fixing process, a novel eco-friendly biomass-based coating that neither used traditional elements such as Cl, Br, P nor toxic organic solvents was first developed to endow cotton fabrics with durable flame retardancy from biomass tannin (TA), tartar emetic (TE), and Fe2+. In this coating system, TA used as a charring agent was fixed onto the fiber surface of cotton fabric by TE in water via the action like dyestuff fixing, while Fe2+ coordinated with the hydroxyl of TATE can catalyze TA and cotton fibers to form graphited stable carbon residues for achieving high flame retardance. Consequently, the resultant fabrics showed great flame retardance with excellent durability. Even after 100 laundering or friction cycles, their limiting oxygen index values of similar to 27.0% hardly changed. And the washed flame-retardant cotton fabrics still easily passed the horizontal flammability test with an extremely low destroy spread speed. Moreover, scanning electron microscopy, confocal laser scanning microscope, and cone calorimeter test results all confirmed the durability of the coating. The flame-retardant mechanism analysis demonstrated that the coating could promote the cotton fibers to form dense and regular graphitized carbon layers and effectively protect the matrix from decomposing to flammable gases under high temperatures. In addition to durable flame retardancy, the mechanical properties and hydrophilicity of cotton were slightly influenced by the flame-retardant coating. This eco-friendly biomass-based flame-retardant coating provides a new strategy for fabricating green flame-retardant systems without using hazardous compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据