4.7 Article

PdCoNi alloy nanoparticles decorated, nitrogen-doped carbon nanotubes for highly active and durable oxygen reduction electrocatalysis

期刊

CHEMICAL ENGINEERING JOURNAL
卷 411, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128527

关键词

PdCoNi; Oxygen reduction reaction; Electrocatalysts; N-doped carbon nanotubes; Stability

资金

  1. National Natural Science Foundation of China [21875125, 21561023]
  2. Natural Science Foundation of Inner Mongolia Autonomous Region of China [2017JQ03]
  3. Program of Higher-level Talents of Inner Mongolia University [21300-5155104]
  4. Grassland Talent Innovation Team of Inner Mongolia
  5. Grassland Talent Program

向作者/读者索取更多资源

The PdCoNi/NCNTs catalyst, incorporating Co and Ni, exhibits enhanced catalytic activity and stability, achieving high performance and durability as an air cathode catalyst in lithium-air battery applications.
Alloying Pd with transition metals is an effective strategy to enhance its catalytic activity toward oxygen reduction reaction (ORR). However, these catalysts always suffer from poor durability due to metal leaching during ORR. Herein, the catalyst of PdCoNi alloy nanoparticles supported on nitrogen-doped carbon nanotubes (PdCoNi/NCNTs) is prepared via one-pot solvothermal method and subsequent calcination. Introducing Co and Ni into Pd lattice not only boosts the catalytic activity, but also promotes the stability of the catalyst. As a result, the PdCoNi/NCNTs catalyst achieves a half-wave potential of 0.907 V and a specific activity of 3.78 mA/cm(2) at 0.9 V vs. RHE, with 10 mV positive shift and 17.2 times enhancement over the commercial Pt/C catalyst in alkaline solution. Meanwhile, PdCoNi/NCNTs show much improved durability, with only 5 mV shift in the half wave potential after 10,000 cycles, remarkably superior to those of PdCo/NCNTs, PdNi/NCNTs, and Pd/NCNTs. Valence band photoemission spectral analysis and theoretical calculations indicate that the existence of Co and Ni can tune the electronic structure of Pd by compressive strain effect and coordination effect, facilitating the activation of O-2 and stabilizing the alloy elements, thus delivering a desired ORR activity and stability. Meanwhile, the high stability and intrinsic catalytic activity of NCNTs is also beneficial to ORR. Furthermore, PdCoNi/NCNTs also exhibit high performance as the air cathode catalysts in lithium-air battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据