4.7 Article

Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn2O5

期刊

CHEMICAL ENGINEERING JOURNAL
卷 410, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.128305

关键词

Aromatics oxidation; Density functional theory; Labile oxygen; Mullite oxide

资金

  1. National key research and development program [2016YFB0901600]
  2. Tianjin City Distinguish Young Scholar Fund
  3. National Natural Science Foundation of China [21975136]
  4. Tianjin key research and development program [18ZXSZSF00060]
  5. National Engineering Lab for Mobile Source Emission Control Technology [NELMS2018A01]
  6. Shenzhen Science, Technology and Innovation Committee [JCYJ20190808151603654]

向作者/读者索取更多资源

The ternary mullite SmMn2O5 has been successfully developed as a high-efficient oxide catalyst for benzene and toluene oxidation at low temperatures through a combination of experimental characterizations and density functional theory calculations. This catalyst shows remarkable deep oxidation performance and good stability, making it superior to most reported oxide catalysts. The discovery of the active oxygen species on the surface of the material provides crucial insights for understanding the catalytic oxidation of metal oxides at the atomic level.
The development of high efficient oxide catalyst is crucial to remove the aromatics pollutants. Herein, we propose a ternary mullite SmMn2O5 to catalytically oxidize benzene and toluene at a low temperature. Through a joint exploration of experimental characterizations and density functional theory calculations, the active species on the surface of the material are accessed. In the presence of the two-coordinated surface labile oxygen (O-lab), the hydrothermal-synthesized mullite achieves a remarkable deep oxidation performance with T-90 at 223 degrees C (benzene) and 228 degrees C (toluene), superior to most reported oxide catalysts. Simultaneously, SmMn2O5 displays no deactivation after 150 h reactions with repeating water vapor. Combining in situ DRIFTS and DFT calculations, the dissociation of maleic anhydride into acetic anhydride species on O-lab active sites turns out to be the rate-controlled step with a calculated kinetic barrier of 1.253 eV. These findings of O-lab allow to understand the catalytic oxidation of metal oxides at the atomic level and are thus imperative for the catalyst development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据