4.4 Article

Delineating binding potential, stability of Sulforaphane-N-acetyl-cysteine in the active site of histone deacetylase 2 and testing its cytotoxicity against distinct cancer lines through stringent molecular dynamics, DFT and cell-based assays

期刊

CHEMICAL BIOLOGY & DRUG DESIGN
卷 98, 期 3, 页码 363-376

出版社

WILEY
DOI: 10.1111/cbdd.13854

关键词

DFT; E-Pharmacophores method; HDAC2; MM-GBSA; molecular docking; molecular dynamics; MTT assay; mutation; neurodegenerative disorders; SFN-NAC; Sulforaphane

向作者/读者索取更多资源

The study investigated the binding affinity, interaction mode, pharmacophoric features, and stability of SFN-NAC towards HDAC2 using various molecular modeling techniques. Furthermore, density functional theory (DFT) study was conducted on SFN-NAC and entinostat in complex state with HDAC2. The results revealed higher binding affinity of entinostat for HDAC2 and its broad spectrum cytotoxicity compared to SFN-NAC.
Histone deacetylase 2 (HDAC2), an isozyme of Class I HDACs has potent imputations in actuating neurodegenerative signaling. Currently, there are sizeable therapeutic disquiets with the use of synthetic histone deacetylase inhibitors in disease management. This strongly suggests the unfulfilled medical necessity of plant substitutes for therapeutic intervention. Sulforaphane-N-acetyl-cysteine (SFN-N-acetylcysteine or SFN-NAC), a sulforaphane metabolite has shown significantly worthier activity against HDACs under in vitro conditions. However, the atomistic studies of SFN-NAC against HDAC2 are currently lacking. Thus, the present study employed a hybrid strategy including extra-precision (XP) grid-based flexible molecular docking, molecular mechanics generalized born surface area (MM-GBSA), e-Pharmacophores method, and molecular dynamics simulation for exploring the binding strengh, mode of interaction, e-Pharmacophoric features, and stability of SFN-NAC towards HDAC2. Further, the globally acknowledged density functional theory (DFT) study was performed on SFN-NAC and entinostat individually in complex state with HDAC2. Apart from this, these inhibitors were tested against three distinct cancer cell models and one transformed cell line for cytotoxic activity. Moreover, double mutant of HDAC2 was generated and the binding orientation and interaction of SFN-NAC was scrutinized in this state. On the whole, this study unbosomed and explained the comparatively higher binding affinity of entinostat for HDAC2 and its wide spectrum cytotoxicity than SFN-NAC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据